DIANIONS OF N-MONOSUBSTITUTED-3-(PHENYLSULFONYL) PROPANAMIDES.

CONVENIENT REAGENTS FOR THE SYNTHESIS OF 5-ALKYL-2(5H)-FURANONES

Kazuhiko TANAKA,* Hisanori WAKITA, Hidemi YODA, and Aritsune KAJI Department of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606

Treatment of N-phenyl-3-(phenylsulfonyl) propanamide with 2 equiv. of butyllithium at -78 °C afforded the dianion. Aldehydes and ketones upon treatment with the dianion provided stable γ -hydroxy amides, which were converted in good yields to 5-alkyl-2(5H)-furanones. Optically active (R)- and (S)-5-octyl-2(5H)-furanones, and (R)- and (S)-5-tridecyl-2(5H)-furanones were prepared from aldehydes and the dianions, derived from chiral N-monosubstituted-3-(phenylsulfonyl) propanamides.

The reaction of the enolate anions continues to play an important role in organic synthesis. 1) A number of efficient techniques have been developed for the stereoselective formation of these reactive species and the enantioselective and diastereoselective construction of carbon-carbon bonds. 2)

In contrast, relatively little attention has been given to the reaction of homoenolate anions or homoenolate anion equivalents. Uda $et\ al.$ found that the dianion could be prepared from 3-(phenylsulfonyl)propionic acid and reacted with cyclopentanone to give a dihydro-2(3H)-furanone in 37% yield. 4g)

The purpose of this communication is to report our observation on the utility of the diamions of N-monosubstituted-3-(phenylsulfonyl) propanamides as

$$PhSO_{2}CH_{2}CH_{2}CNPh \qquad PhSO_{2}CH_{2}CH_{2}CNHPh$$

$$0 \qquad 0$$

$$1 \qquad 2$$

$$2 \longrightarrow PhSO_{2}CHCH_{2}C=NPh \qquad R^{1}R^{2}C=0 \longrightarrow PhSO_{2}CHCH_{2}CNHPh$$

$$3 \qquad R^{1}-COH \qquad 0$$

$$R^{2} \qquad 4$$

$$R^{2} \qquad 0$$

$$Scheme 1.$$

the homoenolate anion equivalent for the preparation of racemic and optically active 5-alky1-2(5H)-furanones from carbonyl compounds (Scheme 1).

Although treatment of N-methyl-N-phenyl-3-(phenylsulfonyl) propanamide (1) with 1 equiv. of butyllithium at -78 °C gave intractable decomposition products, probably due to the elimination of lithium benezenesulfinate, 5) the diamion 3 could be readily prepared from N-phenyl-3-(phenylsulfonyl) propanamide (2).

Thus, addition of 2 equiv. of butyllithium to a solution of 2 in THF at -78 °C gave a pale yellow solution of the dianion 3. Reaction of 3 with 1.1 equiv. of nonanal in THF at -78 °C for 2 h gave N-phenyl-4-hydroxy-3-(phenylsulfonyl)dodecanamide (4a) in 73% yield: mp 103-106 °C; 1 H NMR (CDCl $_3$) δ 9.35 (s, 1H, NH), 6.95-8.20 (m, 10H, aryl CH), 4.05-4.50 (m, 2H, OH and CH), 3.95 (m, 1H), 3.00 (d, J = 6.0 Hz, 2H, CH $_2$), 0.60-1.90 (m, 17H); IR (KBr) 3350 (OH), 1665 (C=0), 1320, 1160 (SO $_2$) cm $^{-1}$. Treatment of 4a with dilute hydrochloric acid in refluxing dioxane for 4 h gave 5-octyl-4-(phenylsulfonyl)-dihydro-2(3H)-furanone, which without purification was treated with triethylamine in chloroform at room temperature for 18 h to afford 5-octyl-2(5H)-furanone (5a) in 53% overall yield from 4a after purification by silica gel chromatography: bp 115 °C/0.8 mmHg (1 mmHg = 133.322 Pa); 1 H NMR (CDCl $_3$) δ 7.38-7.55 (m, 1H), 5.92-6.08 (m, 1H), 4.87-5.07 (m, 1H), 0.56-1.82 (m, 17H); IR (neat) 1760 (C=O), 1600 (C=C) cm $^{-1}$. Found: C, 73.50; H, 10.12%. Calcd for C12H2OO2: C, 73.43; H, 10.27%. Other examples are given in Table 1.

$R^1R^2C=0$	Reaction co	onditions ^{a)} time/h	Yield/%b) of 4	Yield/% of ^{b)} furanone (5)	
Nonanal	- 78	2	73 (4a)	53 (5a)	
Cyclohexanecarbaldehyde	-78	2	80 (4b)	84 (5b)	
Isovaleraldehyde	- 78	2	71 (4c)	50 (5c)	
Cyclohexanone	-78	2	57 (4d)	80 (5d)	
Hexanal	-78 →-10	3.5	54 (4e)	71 (5e)	
2-Pentanone	-78 →-10	3.5	60 (4f)	71 (5f)	
Heptanal	-78 →-10	3.5	69 (4g)	83 (5g)	

Table 1. Preparation of 5-alkyl-2(5H)-furanones from carbonyl compounds

To demonstrate the versatility of this method we have synthesized both enantiomers of 5-octyl-2(5 $^{\rm H}$)-furanones (10, R = $^{\rm R}$ -C₈H₁₇) and 5-tridecyl-2(5 $^{\rm H}$)-furanones (10, R = $^{\rm R}$ -C₁₃H₂₇) which serve as intermediates in the synthesis of avenaciolide, cerulenin, sex pheromone of rove bettle, 11) and protolichesterinic acid (Scheme 2).

Addition of nonanal to a solution of the dianion derived from N-(S)- α -methylbenzyl-3-(phenylsulfonyl)propanamide (6) ([α] $_D^{25}$ -79.5°(c 1.0,

a) All reactions were carried out in an argon atmosphere.

b) Isolated yields.

dioxane)) gave a mixture of diastereomeric adducts 9 in 66% combined yield. The

CH₂OCH 7, R³=(S)-PhCH₂CH-

 $CH_{2}OCH_{3}$ 8, $R^{3}=(S)-(CH_{3})_{2}CHCH_{2}CH-$

Scheme 2.

more mobile diastereomer (I) was isolated by column chromatography as an oil, $\left[\alpha\right]_D^{25}$ -91.5° (c 0.47, dioxane). Lactonization of the diastereomer as described above gave (S)-(+)-5-octyl-2(5H)-furanone (10, R = n-C₈H₁₇) in 84% chemical yield and 98% optical purity. The less mobile diastereomer (II) was obtained as an oil, $\left[\alpha\right]_D^{25}$ -51.0° (c 1.1, dioxane), which was transformed into (R)-(-)-5-octyl-2(5H)-furanone (10, R = n-C₈H₁₇) in 80% chemical yield and 100% optical purity. The results of the reaction of the dianions derived from optically active amides are listed in Table 2.

Table 2. Synthesis of optically active 5-alkyl-2(5 $\mathbb H$)-furanone (10) using chiral dianions

Amide	R ⁴ CHO	Yield/% of 9	Composi- tion/%	R^4 in 10	Yield/% of 10	[a] _D ²⁵ b)	Optical purity/%c)
6	Nonanal	66	I 32	n-С ₈ Н ₁₇	84	+67.7°	98 (S)
			II 28	^{n-C} 8 ^H 17	80	-69.1°	100 (R)
6	Tetradecanal	65	I 29	^{n-C} 13 ^H 27	86	+43.0°	83 (S)
			II 26	^{n-C} 13 ^H 27	86	-49.7°	96 (R)
7	Nonanal	53	I 27	ⁿ -C ₈ H ₁₇	60	-57.7°	83 (R)
			II 24	n-С ₈ Н ₁₇	80	+58.2°	84 (S)
8	Nonanal	46	I 28	n-C ₈ H ₁₇	73	-59.6°	86 (R)
			II 16	ⁿ -C ₈ H ₁₇	90	+68.8°	99 (S)

a) Numerals I and II indicate the order of elution of the diastereomers. The third component is a mixture of two diastereomers. (a) b) Measured in dioxane (c 2.0). (c) Optical purity based on $[\alpha]_D^{25}$ -69.2° (c 2, dioxane) for (R)-5-octyl-2(5H)-furanone and $[\alpha]_D^{25}$ -51.7° (c 2, dioxane) for (R)-5-tridecyl-2(5H)-furanone. See Ref. 8.

These data indicate that the use of the amide derived from (S)-(-)- α -methylbenzylamine as the chiral auxiliary provides 5-alkyl-2(5H)-furanones of

high optical purity.

Since the chiral amide $_{\circ}^{6}$ is readily available and the method is operationally very simple, these procedures represent an efficient alternative to existing asymmetric syntheses of 5-substituted-2(5 $_{\rm H}$)-furanones. $^{4\rm j,7,8}$)

References

- 1) For reviews, see: T. Mukaiyama, Org. React., <u>28</u>, 203 (1982); L. M. Jackman and B. C. Lange, Tetrahedron, 33, 2737 (1977).
- 2) For reviews, see: D. A. Evans, J. V. Nelson, and T. R. Taber, Topics in Stereochemistry, 13, 1 (1982); C. H. Heathcock, Science, 214, 395 (1981).
- 3) For a review, see: N. H. Werstiuk, Tetrahedron, 39, 205 (1983).
- 4) a) E. Nakamura and I. Kuwajima, J. Am. Chem. Soc., 99, 7360 (1977); b) E. Nakamura and I. Kuwajima, ibid., 105, 651 (1983); c) R. Goswami, ibid., 102, 5973 (1980); d) R. Goswami and D. E. Corcoran, Tetrahedron Lett., 23, 1463 (1982); e) A. Debal, T. Cuvigny, and M. Larcheveque, ibid., 1977, 3187; f) P. Bakuzis, M. L. F. Bakuzis, and T. F. Weingartner, ibid., 1978, 2371; g) K. Iwai, H. Kosugi, A. Miyazaki, and H. Uda, Synth. Commun., 6, 357 (1976); h) D. Seebach, M. S. Hoekstra, and G. Protschuk, Angew. Chem., Int. Ed. Engl., 16, 321 (1977); i) T. Shono, H. Ohmizu, S. Kawakami, and H. Sugiyama, Tetrahedron Lett., 21, 5029 (1980); j) P. Bravo, P. Carrera, G. Resnati, and C. Ticozzi, J. Chem. Soc., Chem. Commun., 1984, 19; k) For β-metallo-acrylate equivalent, see: S. De Lombaert, B. Lesur, and L. Ghosez, Tetrahedron Lett., 23, 4251 (1982).
- 5) M. Julia and B. Badet, Bull. Soc. Chim. Fr., 1976, 525.
- 6) K. Tanaka, K. Ootake, K. Imai, N. Tanaka, and A. Kaji, Chem. Lett., <u>1983</u>, 633.
- 7) For an enantioselective synthesis of (R)-5-octyl-2(5H)-furanone, see: T. Mukaiyama and K. Suzuki, Chem. Lett., 1980, 255; M. M. Midland and A. Tramontano, Tetrahedron Lett., 21, 3549 (1980).
- 8) L. P. Vigneron and J. M. Blanchard, Tetrahedron Lett., 21, 1739 (1980).
- 9) J. L. Herrmann, M. H. Berger, and R. H. Schlessinger, J. Am. Chem. Soc., 95, 7923 (1973); J. L. Herrmann, M. H. Benger, and R. H. Schlessinger, ibid., 101, 1544 (1979); H. Takei, Y. Fukuda, T. Taguchi, T. Kawara, H. Mizutani, and T. Mukuta, Chem. Lett., 1980, 1311.
- 10) R. K. Boeckman, Jr., and E. W. Thomas, Tetrahedron Lett., 1976, 4045;
 A. A. Jakubowski, F. S. Guziec, Jr., and M. Tishler, Tetrahedron Lett.,
 1977, 2399; A. A. Jakubowski, F. G. Guziec, Jr., M. Sugiura, C. C. Tam,
 and M. Tishler, J. Org. Chem., 47, 1221 (1982); d) K. Mikami, N. Kishi, and
 T. Nakai, Chem. Lett., 1981, 1721.
- 11) W. H. Pirkle and P. E. Adams, J. Org. Chem., 44, 2169 (1979).
- 12) R. E. Damon and R. H. Schlessinger, Tetrahedron Lett., 1976, 1561.
- 13) Attempts to separate all four diastereomers by silica gel chromatography were unsuccessful.

(Received May 23, 1984)